Japanese Dependency Structure Analysis Based on Support Vector Machines
نویسندگان
چکیده
This paper presents a method of Japanese dependency structure analysis based on Support Vector Machines (SVMs). Conventional parsing techniques based on Machine Learning framework, such as Decision Trees and Maximum Entropy Models, have difficulty in selecting useful features as well as finding appropriate combination of selected features. On the other hand, it is well-known that SVMs achieve high generalization performance even with input data of very high dimensional feature space. Furthermore, by introducing the Kernel principle, SVMs can carry out the training in high-dimensional spaces with a smaller computational cost independent of their dimensionality. We apply SVMs to Japanese dependency structure identification problem. Experimental results on Kyoto University corpus show that our system achieves the accuracy of 89.09% even with small training data (7958 sentences).
منابع مشابه
Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملDependency Analysis of Japanese Spoken Language via SVM
This paper discuss a dependency analyzer employing Support Vector Machines (SVMs) for Japanese spoken language. Most conventional dependency analyzers target written texts. Thus, we use a currently available spoken language corpus and make the SVMs learn the corpus to build a dependency analyzer that targets spoken language. We used two types of corpora: one contains written language, and the o...
متن کاملStatistical Dependency Analysis with Support Vector Machines
In this paper, we propose a method for analyzing word-word dependencies using deterministic bottom-up manner using Support Vector machines. We experimented with dependency trees converted from Penn treebank data, and achieved over 90% accuracy of word-word dependency. Though the result is little worse than the most up-to-date phrase structure based parsers, it looks satisfactorily accurate cons...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کامل